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Cubic eddy-viscosity turbulence models for strongly swirling
con�ned �ows with variable density

Xiaodong Yang‡;§ and Huiyang Ma∗;†

Graduate School of the Chinese Academy of Sciences; Beijing; People’s Republic of China

SUMMARY

An investigation on the predictive performance of cubic eddy-viscosity turbulence models for strongly
swirling con�ned �ows with variable density is presented. Comparisons of the prediction with the
experiments show some improvements of cubic models over the linear k–� model. The linear k–� model
does not contain any mechanism to represent the interaction of swirl and density variation and as a
consequence it performs poorly. With appropriate modelling, two-equation cubic turbulence models can
capture the subcritical nature of the �ow, represent the azimuthal velocity pro�les of combined forced-
free vortex motion, and predict the combined e�ects of swirl and density variation fairly well. However,
the calibration of model coe�cients is still a topic of investigation. Further amendments are also needed
for the equations of k and � to take into account the e�ects of swirl and density gradients correctly.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Swirling �ows are widely used in industrial applications, such as combustion chambers and
furnaces. At su�cient degree of swirl, a recirculation region is created at the axis of symmetry
to enhance mixing of the fuel and oxidant, anchor the �ame and achieve complete combustion
in the shortest possible distance. In particular, strongly swirling con�ned �ows examined
experimentally by So et al. [1] and Escudier et al. [2] tend to display undesirable features,
having a near-stagnant or weakly recirculation region at the axis of symmetry. These �ows
are close to subcritical and are highly sensitive to downstream perturbations, essentially due to
the decay of the production rates of the shear stresses a�ected by the rotational strain [3]. In
the experiments of So et al. [1], Ahmed and So [4], So and Ahmed [5], the variable density
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e�ects on jet mixing in strongly swirling con�ned �ows is investigated. It is shown that the
decay of jet and mixing between jet �uid and surrounding air are in�uenced by the interaction
between swirl, density variation and turbulence. In the case of the air jet, the central jet will
be in equilibrium. With the lighter He–air jet, the jet will retain its integrity and mixing with
surrounding air is suppressed. Whereas with the heavier CO2 jet, the jet will decay fast and
mixing is enhanced.
It is well known that conventional linear eddy-viscosity models fail completely to represent

the interaction of swirl and density variation, resulting in the solid-body rotation form of
the azimuthal velocity pro�le [6], and always predicting that the central jet mixes rapidly
with the surrounding air regardless of its density [7]. In contrast, second moment closures
inherently capture the above features acceptably well [3, 8, 9], in which the production rates
are represented exactly and the redistribution term (pressure-strain rate correlation tensor)
represents mechanisms of the energy redistribution process. However, for the cases studied
here, besides the Navier–Stokes and scalar transport equations, second moment closures need
to solve a closed system of twelve coupled transport equations governing the distribution of
the six independent Reynolds stresses, the three scalar �uxes, the scalar variance, the scalar
dissipation rate and the dissipation rate of turbulence energy [9]. Two-equation, cubic eddy-
viscosity models o�er a better balance between accuracy and cost in many complex �ows
[10–12]. Some improvements have been achieved with them for constant-density swirling
con�ned �ows [13, 14]. With these models, the tangential velocity does not follow the solid-
body rotation form any more, but the models still need to develop and calibrate for rotating
and swirling �ows.
The present study aims at investigating the capability of cubic eddy viscosity turbulence

models on strongly swirling �ows with variable density. Experiments are conducted by
So et al. [1], Ahmed and So [4], So and Ahmed [5], in which the central jets of air,
He–air, CO2 is discharged into a coaxial, strongly swirling con�ned air �ow. Two cubic eddy-
viscosity turbulence models under low-Re k–� framework are Apsley and Leschziner [15] and
Merci et al. [16]. For comparison, low-Re k–� model of Launder and Sharma [17] is chosen
as the standard model. All models are compared under the same numerical framework, with
the same discretization scheme and iterative solver.

2. GOVERNING EQUATIONS

Variable-density turbulent �ows have been studied with various statistical averaging approaches
[18], such as Reynolds averaging (or conventional averaging) [19], Favre averaging (or
density-weighted averaging, binary regrouping) [20], mixed-weighted decomposition (or trans-
port selected regrouping) [21] and ternary regrouping [22, 23].
Reynolds averaging yields explicit additional contributions arising directly from density

�uctuations and possesses clearer physical meaning, however, a very large number of these
terms are di�cult to model. On the contrary, Favre averaging implicitly consists in density
�uctuation correlations into a new macroscopic mean value, and the averaged equations are
formally similar to those for constant-density case. This simpli�cation makes Favre averaging
be very widely adopted in variable-density �ows [3, 7, 9, 24], including turbulent combusting
�ows [25, 26].
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In Favre averaging [20], the mean value of any variable is such that �̃=��= �� and the �uc-
tuation �′′ is such that ��′′=0 with �= �̃+�′′. Favre averaged �uctuation is not centred, and
��′′=−�′�′= �� �=0. While in Reynolds averaging �= �� + �′ with �′=0. The decomposition
of density � and pressure p are identical in the two methods with �= ��+�′ and p= �p+p′.
For an isothermal, variable density, axisymmetric (@=@�=0) swirling �ow in cylindrical co-

ordinates, the general form of the governing equations, including the Favre averaged Navier–
Stokes equations and the turbulent transport equations, can be expressed as
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where t is time. x, r, � are the axial, radial and tangential co-ordinates, respectively, and Ũ ,
Ṽ , W̃ are the corresponding mean velocity components. �� is mean �uid density. S� is the
source term and �� is the e�ective viscosity for the di�erent variables �, as given in Table I.
In Table I, �= @Ũ =@x + @Ṽ =@r + Ṽ =r, and p̂= �p+ (2=3) ��k̃. The turbulent eddy-viscosity

�t = ��C�f�k̃�t . S� is designed to provide the correct near-wall viscous sublayer behaviour.
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The production rate of the turbulent kinetic energy

Pk =−�u′′
i u′′
j
@Ũi
@xj

=− ���̃aijsij (2)

Gk denotes additional production resulting from the coupling of the turbulent mass �ux with
the mean pressure �eld. It is brie�y called the mean pressure work, and is speci�c to variable
density �ows and Favre formulation [27],

Gk =−u′′
i
@ �p
@xi

(3)

For the case of binary inert mixing at the same pressure and temperature, according to the
equation of state, the speci�c volume is a linear function of a conserved scalar [28], which
is chosen as the mixture fraction of jet �uid, denoted by F

1
�
= aF + b (4)

where a, b are constants, and a=(�a − �j)=�a�j, b=1=�a.
Favre averaging yields

1
��
= aF̃ + b (5)

If this equation is subtracted from Equation (4), there follows

�′=−a� ��f′′ (6)

This relation allows an exact expression for ��′′ to be obtained [9],
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The mean pressure work
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which is adopted in the model of Merci et al. [16].
Rotating motion inhibits the transfer of energy from the large to the small scales. The

dissipation rate equation should contain some explicit dependence on swirl level in a manner so
as to reduce the dissipation rate as swirl is increased [29]. The modi�cation of the dissipation
rate equation was originally developed for the rotating homogeneous �ows without mean rate
of strain by Bardina et al. [30].

C2 = 1:83 + 0:15�∗ (13)

where �∗=(k=�)
√
�k�k , and �k is the system angular velocity.

For more general wall-bounded rotating and swirling �ows, Bardina et al. [30] proposed
to replace �∗ by

√
wklwkl=2, that is

C2 = 1:83 + 0:075 �w (14)

However, such a term remain active also in �ows without rotation, and it would deteriorate
the predictions of �ows [31]. Considering the e�ect of high strain rates, Merci et al. [16]
proposed

C2 = 1:83 +
0:075 �w
1 + �s 2

(15)

which is used in the present study.

3. CUBIC EDDY-VISCOSITY MODELS

The dimensionless Reynolds-stress anisotropy tensor is de�ned by

aij=
�u′′

i u′′
j = ��

k̃
− 2
3
	ij (16)

Although the foundation and derivation of di�erent models can di�er greatly, for non-linear
eddy-viscosity models up to cubic order, the stress–strain relationship may be written in the
following canonical form:

aij = −2C�f�sij + Aij (17)

Aij = 
1(sikskj − 1
3 sklskl	ij) + 
2(wikskj − sikwkj) + 
3(wikwkj + 1

3 wklwkl	ij)

−�1sklsklsij + �2wklwklsij − �3(wikwklslj + sikwklwlj + wklwklsij − 2
3 wkjslmwmk	ij)

−�4(wiksklslj − siksklwlj) (18)
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Table II. Abbreviations for di�erent turbulence models.

Model Abbreviation

Launder and Sharma [17] SKE
Apsley and Leschziner [15] AL
AL with Equation (15) AL-M
AL-M with Gk (Density e�ects term) AL-M-D
Merci et al. [16] MDVD-D
Merci et al. without Gk MDVD

Table III. Model coe�cients in the turbulent transport equations.

Model C� C1 C2 C3 �F �k ��

SKE 0.09 1.44 1.92 1.0 0.9 1.0 1.3
AL Equation (22) 1.44 1.83 1.0 0.9 Equation (29) Equation (29)
MDVD-D Equation (32) 1.44 Equation (15) 1.0 0.9 1.0 1.3

The quadratic terms and the strain=vorticity-dependent coe�cients are responsible for the
ability of non-linear models to capture anisotropy, and the cubic terms can re�ect the e�ect
of curvature [10]. The cubic term can also capture the swirling e�ect [32].
The non-linear part of the Reynolds stresses:

�ij=− ��k̃Aij (19)

The components of dimensionless mean strain and mean vorticity tensors are denoted by
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Note that sij= sji and wij=−wji.
Abbreviations for di�erent turbulence models are listed in Table II. Model coe�cients in

k̃ and �̃ turbulent transport equations of di�erent models are given in Table III.

3.1. Apsley and Leschziner (1998) [15]

The stress–strain relationship is formed by successive iterative approximations to an algebraic
Reynolds-stress model. Free coe�cients are calibrated by reference to DNS data for a channel
�ow.
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The turbulence time scale is

�t =
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(21)
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The dissipation length is based on the results of DNS data:

l(1)� =0:179yn(1 + 128=y
∗)[1− exp(−y∗2=279)] (27)

where yn is the distance from the nearest wall and y∗ ≡yn
√
k̃=� is a dimensionless distance.

The anisotropy-tensor components a∗
ij and the shear parameter �

∗ in equilibrium condition
are calibrated from DNS data for plane channel �ow:
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The constants in turbulent transport equations are:

C1 = 1:44; C2 = 1:83; �k =
1:0

1 + �
2=3− �2 ; ��=
1:37

1 + �
2=3− ��2
(29)

The non-equilibrium parameter, which accounts for departures of the local shear parameter
�=

√
sklskl + wklwkl, is

fP =
2f0

1 +
√
1 + 4f0(f0 − 1)(�=�∗)2

f0 = 1 + 1:25max(0:09�∗2; 1:0)

(30)
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3.2. Merci et al. (2001) [16]

This cubic model combined with a new transport equation for the dissipation rate, in which a
low-Reynolds source term is introduced. The model has been checked on di�erent realizability
constraints.
The turbulence time scale in this low-Reynolds model is de�ned as

�t =
k̃
�̃
+
√
�
���̃

(31)

C� = (A1 + Asmax(�s; �w))−1 (32)

where the dimensionless strain invariant and vorticity invariant can be written as
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√
2sklskl; �w≡

√
2wklwkl (33)
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√
3 cos�; �= 1

3 arccos(
√
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�s 3
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2 = q2 + q1=6; 
3 = 0; �1 = �2 =−c; �3 = 0; �4 = 2c (35)

q1 = (7 + 3max(�s; �w) + 1:2× 10−2 max( �s 3; �w3))−1

q2 = (1:7 + 5:4max(�s; �w) + 3× 10−2 max( �s3; �w3))−1

�s¿ �w; c=−600C4�; �s¡ �w; c=−min(600C4�; 4f�C�=( �w2 − �s 2)) (36)

f� = 1− exp
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−4:2× 10−2√y∗ − 5:1× 10−4y∗1:5 − 3:65× 10−10y∗5

)

f1 = 1; f2 = 1− 0:22 exp
(

−Re
2
t

36

)
(37)

where Ret = ��k̃�t=� is the turbulence Reynolds number.
The cross di�usion term, which only has an in�uence near the wall, is added in the low-

Reynolds formulation

S�=−1:8(1− f�)(�+ �t=��) @k̃@xi
@�−1t
@xi

(38)

4. NUMERICAL METHOD

All computations are performed by the same code based on the �nite volume method with
non-orthogonal grids [33]. Variable storage is co-located and cell-centred, with Rhie–Chow
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interpolation for cell-face mass �uxes. The SIMPLE pressure-correction algorithm is used to
obtain the pressure �eld. For the discretization of the convective �uxes, the deferred correction
technique with a blended upwind-central di�erencing scheme is used. The di�usion terms are
approximated by the second-order central di�erencing scheme. For all variables, the blending
factor of central di�erencing is 0.0 (pure upwind scheme) in the beginning, and then 0.5 to the
end. The Stone’s SIP (strongly implicit procedure) method is employed with under-relaxation
factors.
Convergence is judged by monitoring the magnitude of the absolute residual sources of

mass and momentum, normalized by the respective inlet �uxes. The iteration is continued
until all above residuals fell below 0.05%.

5. RESULTS AND DISCUSSIONS

5.1. Geometry and boundary conditions

The �ow geometry is shown in Figure 1. A strongly swirling outer air �ow, characterized by
the swirl number

S=
∫ R

0
UWr2 dr

/
R
∫ R

0
U 2r dr=2:25 (39)

is introduced into a chamber of radius R=62:5mm together with a central nonswirling jet of
diameter d=8:73 mm. The central jet �uid is air, He–air, and CO2, respectively. The overall
average velocity upstream of swirler Uav is about 6:8 m=s. Based on Uav and the diameter of
the test section, the characteristic Reynolds number, was Re=5:49× 104. All experiments are
carried out at this one Reynolds number. Test conditions for di�erent jet �uids are summarized
in Table IV. The parameters �j=�a, Uj, Rej and Ṁ j=Ṁ denote jet �uid to swirling air density
ratio, jet velocity, jet Reynolds number based on Uj and jet nozzle diameter d, and jet to
swirling �ow axial momentum ratio, respectively.
The scalar measured in experiments is volume concentration C of He [4]. However, the

scalar calculated is the mixture fraction of jet �uid, F̃ . Therefore, C are transformed into F̃

Figure 1. Geometry of strongly swirling con�ned �ow.
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Table IV. Test conditions of gas jet experiments.

Parameters Air jet He–air jet CO2 jet

�j=�a 1 0.31 1.52
Uj (m=s) 25.4 16.8 25.4
Rej × 10−3 14.38 1.50 28.43
Ṁ j=Ṁ 0.068 0.009 0.104

with the aid of a 
 probability density function (PDF) P(C) for C [9],

F̃ =
∫
F(C)P(C) dC (40)

where F =F(C) is the instantaneous relationship between F and C.
As shown in Figure 1, the solution domain is bounded by inlet plane, con�ning wall, axis

of symmetry and exit plane. The inlet plane is located at x=d=1, where the measured data
for Ũ , W̃ , F̃ are speci�ed, and Ṽ =0. For CO2 jet case, in the absence of information for the
scalar �eld, the measured F̃ pro�le of He–air jet is used. The turbulent kinetic energy k̃ is
calculated from the measured and assumed normal stresses. The dissipation rate is estimated
from

�̃=C3=4� k̃
3=2=L (41)

where the length scale L=0:06R [3]. At the wall, Ũ , Ṽ , and W̃ are set to zero according to
the wall no-slip conditions. Zero-gradient condition is adopted for F̃ . k̃w =0, �̃w =2�k̃p=y2p,
where subscript w denotes the value at the wall and subscript p the value at the near-wall
node. At the axis of symmetry, zero-gradient conditions are adopted for all variables except Ṽ
and W̃ , which are set to zero. Because of the subcritical nature of the �ow, at the exit plane
x=d=40, the measured axial velocity Ũ is prescribed to avoid the predictive uncertainties [8].
Zero-gradient conditions are adopted for other variables. For CO2 jet case, Ũ is set to zero
in the backward velocity region near the axis of symmetry to use zero-gradient conditions for
other variables [9].

5.2. Grid independency

The grid with 150× 170 cells is employed, which is �ne enough to minimize the e�ects of
numerical di�usion [34] and the solutions are virtually indistinguishable from those obtained
by pure upwind di�erencing. This non-uniform grid ensures y+¡0:1 along the �rst grid-line
from the wall for the use of low-Reynolds-number turbulence models. The grid is also re�ned
near the symmetry plane where large density gradient is encountered.
To prove grid-independency, grids with 75× 85 and 300× 340 cells are also adopted.

Figure 2 shows the pro�les of axial and azimuthal velocities for air jet calculated by SKE
model with these three grids. The results show that the grid with 150× 170 cells is su�cient
to ensure grid-independence.
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Figure 2. Axial and azimuthal velocity pro�les with grid re�nement.

5.3. Air jet

Figure 3 shows the decay of centerline axial velocity with di�erent models. SKE predicts a
reserve �ow region. AL and AL-M perform like SKE although there are no recirculation re-
gions. They seriously overestimate the levels of shear stress throughout the domain, resulting
in the rapid disappearance of central jet. MDVD is in closest agreement with the measure-
ments, and captures the subcritical nature of the �ow very well. The oscillation of the pro�le
around x=d=4 for MDVD is due to the sensitivity to inlet condition Ṽ =0.
Figure 4 represents the axial velocity pro�les at di�erent locations. The results of AL and

AL-M are almost identical except near the centreline, so that the rotation modi�cation to the
� equation is negligible. SKE, AL and AL-M are in reasonable agreement with experimental
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Figure 3. Centreline axial velocity for air jet.

data in the outer region, however, they predict a rapid decay of jet near the centreline. It is
clear that MDVD predicts the decay of central jet correctly, but the pro�les have a radial
displacement and the overall agreement is not satis�ed.
The radial pro�les of the azimuthal velocity are shown in Figure 5. SKE predicts a solid

body pro�le of the azimuthal velocity. Whereas AL and AL-M mimic the observed combined
forced-free vortex motion, and agree with measurements fairly well. However, MDVD fails to
predict the azimuthal velocity. It is indicated that the fully developed rotating pipe �ow does
not contain enough �ow physics to calibrate the cubic turbulence model, hence the calibration
of cubic terms is still a topic of investigation [14].

5.4. He–air jet

The decay of centreline axial velocity for He–air jet is given in Figure 6. The results are similar
to those of air jet. SKE, AL-M and AL-M-D predict recirculation bubbles near the jet nozzle.
MDVD-D agrees with experimental data fairly well, predicting the combined stabilizing e�ect
of swirl and density di�erence, whereas MDVD overestimates the decay to some extent. The
mean pressure work term Gk , representing the coupling of the turbulent mass �ux with the
mean pressure �eld, exerts a signi�cant in�uence on the computed results, and cannot be
neglected.
The decay of mixture fraction at centreline is shown in Figure 7. SKE, AL-M and AL-

M-D predict a rapid decay of mixture fraction due to the reserve �ow region at the axis of
symmetry, resulting in a rapid mixing between jet �uid and surrounding air. MDVD-D is
close to the measurements to some extent, similar to the results of second moment closures
[9]. MDVD predicts a much more rapid decay. The interaction between density gradients and
swirl induced pressure gradients is importance here, and should be modeled.
Figure 8 represents the radial pro�les of the axial velocity at di�erent locations. SKE and

AL-M-D predict recirculation regions at the axis of symmetry and enhance the mixing of jet
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Figure 4. Axial velocity pro�les for air jet.

�uid. MDVD-D successfully represents the central jet decay and agrees with experimental data
very well near the axis of symmetry. Without the term of mean pressure work, MDVD fails
to capture the behavior of central jet decay. MDVD-D also predicts a recirculation bubble
between the jet �uid and the outer swirling air �ow, which serves as a bu�er to suppress
the mixing and is correspond to the experiments, although the predicted pro�les have a radial
outside displacement. MDVD-D improves the results of MDVD also in this region.
Figure 9 shows the azimuthal velocity pro�les. The results are similar to those of air jet.

SKE predicts a solid body rotation. AL-M-D agrees with experimental data well at x=d=5,
10 and 20, where MDVD and MDVD-D fail to predict correctly. At x=d=40, MDVD and
MDVD-D show better results because the �ow is nearly fully developed. The results of MDVD
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Figure 5. Azimuthal velocity pro�les for air jet.

and MDVD-D show that the mean pressure work term has little in�uence on the azimuthal
velocity.
Figure 10 gives the mixture fraction pro�les for He–air jet at di�erent locations. SKE,

AL-M-D completely fail to predict the mixing of central jet, representing a uniform pro�le
of su�cient mixing, which is due to the central recirculation bubbles predicted. MDVD gives
a rapid decay of central jet. MDVD-D gives results similar to second moment closures [9].
Although the peak values at the axis of symmetry are not correspond to the measurements,
the boundary of He–air jet region is predicted very well, since MDVD-D represents the
recirculation region between the jet �uid and the outer swirling air �ow correctly.
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Figure 6. Centreline axial velocity for He–air jet.
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Figure 7. Centreline mixture fraction for He–air jet.

5.5. CO2 jet

Figure 11 represents the decay of centreline axial velocity for CO2 jet. SKE, AL-M, and AL-
M-D predict central recirculation bubbles near the jet nozzle. However, experiments show that
the central recirculation bubble appears downstream. MDVD and MDVD-D predict correct
decay of central jet. The mean pressure work term is found to be small in the present case
and exert a negligible in�uence on the computed results.
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Figure 8. Axial velocity pro�les for He–air jet.

The decay of mixture fraction at centreline is shown in Figure 12. Contrary to the results
in He–air jet, density di�erence and swirl combined give rise to an accelerated decay of the
jet and increased mixing between jet �uid and the outer swirling air �ow. Without the central
recirculation, MDVD and MDVD-D predict a slower decay of central jet than other models.
Figure 13 shows the axial velocity pro�les. There are almost no di�erence between MDVD

and MDVD-D, which predict the central decay better than other models. SKE and AL-M-
D predict reserve regions near the axis of symmetry, while MDVD and MDVD-D predict
recirculation bubbles between the jet �uid and the outer swirling air �ow, which are incorrect
compared with the measurements. Figure 14 represents the azimuthal velocity pro�les. The
results are similar to those of He–air jet.
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Figure 9. Azimuthal velocity pro�les for He–air jet.

6. CONCLUSIONS

The present studies show that the cubic models give some improvements compared to SKE
in the prediction of strongly swirling �ows with variable density. SKE does not contain any
mechanism to represent the interaction of swirl and density variation and as a consequence it
performs poorly, predicting the solid-body rotation and rapid decay of central jet regardless
of its density. Cubic model of Merci et al. [16] captures the subcritical nature of the �ow
and predicts the combined e�ects of swirl and density variation successfully. It predicts the
rapid decay of the CO2 jet and the much slower decay of the He–air jet correctly, although it
cannot exactly represent the azimuthal velocity. Cubic model of Apsley and Leschziner [15]
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Figure 10. Mixture fraction pro�les for He–air jet.

represents the azimuthal velocity pro�les of combined forced-free vortex motion fairly well,
however, it overestimates the decay of central jet to some extent. These results show that cubic
models can represent the �ow physics well with appropriate modelling, and the calibration of
model coe�cients is still a topic of investigation. The linear assumption Equation (9) cannot
represent the anisotropy of turbulent scalar �ux, and non-linear models for the turbulent scalar
�ux are necessary [35].
The redistribution term in second moment closures represents mechanisms of the energy

redistribution process, which associates with non-local interactions due to the pressure �uc-
tuations, and is a key element in capturing complex �ow phenomena, such as the e�ects of
swirling and rotation. Unfortunately, the redistribution term has no counterpart in the kinetic
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Figure 11. Centreline axial velocity for CO2 jet.
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Figure 12. Centreline mixture fraction for CO2 jet.

energy equation, since it has zero trace. It is also known that the proposed �-equation used so
far su�er from the lack of detailed justi�cation [36]. For k–� two-equation cubic turbulence
models, further amendments are needed for the equations of k and � to take into account the
e�ects of swirl and density gradients.
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Figure 13. Axial velocity pro�les for CO2 jet.

NOMENCLATURE

a; b constants in scalar density relation
aij dimensionless Reynolds-stress anisotropy tensor
Aij non-linear part of aij
C volume concentration
C1; C2; C3 model coe�cients
C� eddy viscosity coe�cient
d jet nozzle diameter
F mixture fraction of jet �uid
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Figure 14. Azimuthal velocity pro�les for CO2 jet.

F̃ Favre averaged mixture fraction
f′′ Favre averaged �uctuating mixture fraction
f1; f2; f� wall damping functions
Gk mean pressure work
k turbulent kinetic energy
k̃ Favre averaged turbulent kinetic energy (≡ (1=2)�u′′

i u′′
i = ��)

Ṁ axial momentum �ux of swirling �ow (≡ ∫ R
0 2U

2r dr)
Ṁj jet momentum �ux (≡ 1

4 d
2U 2

j )
p static pressure
Pk production rate of the turbulent kinetic energy
r radial distance
R radius of combustor
Re Reynolds number
Rej jet Reynolds number
Ret turbulence Reynolds number
S swirl number
sij dimensionless mean strain tensor
S� near-wall viscous term
S� source term for �
�s dimensionless strain invariant (≡√

2sklskl)
t time
Ũ ; Ṽ ; W̃ Favre averaged axial, radial, and azimuthal velocities
u′′
i Favre averaged �uctuating velocity
Uav overall average velocity upstream of swirler
wij dimensionless mean vorticity tensor
�w dimensionless vorticity invariant (≡√

2wklwkl)
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x axial distance
xi co-ordinate vector (x1 = x; x2 = r)
y∗ dimensionless wall distance

Greek symbols


1; 
2; 
3 coe�cients for quadratic terms of Reynolds stresses
� dissipation rate of turbulent kinetic energy
�̃ favre averaged dissipation rate of turbulent kinetic energy

(≡Tij@u′′
i =@xj= ��; Tij is molecular viscous stress tensor)

� independent variable
�� e�ective viscosity for �
�1; �2; �3; �4 coe�cients for cubic terms of Reynolds stresses
� di�usion coe�cient
� molecular kinetic viscosity
�t turbulent eddy viscosity
� molecular kinematic viscosity
� azimuthal angle
� divergence of velocity
� �uid density
�F, �k , �� turbulent Schmidt number
�ij non-linear part of Reynolds stresses
�t turbulence time scale
�k system angular velocity

Subscripts

a air
j jet
p near-wall node
t turbulent
w wall
x; r; � axial, radial, and azimuthal co-ordinates
� independent variable

Superscripts

- Reynolds averaged quantity
∼ Favre averaged quantity
′ Reynolds averaged �uctuation
′′ favre averaged �uctuation
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